° 7 ° ″ ł / ° ° Reg. No. :												
----------------------------	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code: L'20842

B.E./B.Tech. DEGREE EXAMINATIONS, NOV./DEC. 2020 Fifth/Sixth/Seventh Semester Mechanical Engineering ME 6502 – HEAT AND MASS TRANSFER (Common to Mechanical Engineering (Sandwich) Mechanical and Automation Engineering) (Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

PART - A (10×2=20 Marks)

- 1. What are various modes of heat transfer?
- 2. What is lumped capacitance analysis?
- 3. What is Dittus-Boelter equation? When does it apply?
- 4. Define Grashof number and explain its significance in free convection heat transfer.
- 5. Give examples for pool boiling and flow boiling.
- 6. What are fouling factors?
- 7. What are the properties of a black body?
- 8. Define Radiosity.
- 9. Distinguish between mass concentration and molar concentration.
- 10. Give examples for natural and forced mass Transfer.

\mathbf{P}	λRТ	-B
--------------	-----	----

 $(5\times13=65 \text{ Marks})$

- 11. a) i) Consider a 1.2 m high and 2 m wide double-pane window consisting of two 3 mm thick layers of glass (k = 0.78 W/mK) separated by a 12 mm wide stagnant air space (k = 0.026 W/mK). Determine the steady rate of heat transfer through this double-pane window and the temperature of its inner surface when the room is maintained at 24°C while the temperature of the outdoors is -5° C. Take the convection heat transfer coefficients on the inner and outer surfaces of the window to be 10 W/m²K and 25 W/m²K respectively.

 - ii) Derive the general 3-dimensional heat conduction equation in Cartesian coordinates.

(6)

(7)

(OR)

- A cylinder 1 m long and 5 cm in diameter is placed in an atmosphere at b) 45°C. It is provided with 10 longitudinal straight fins of material having k = 120 W/mK. The height of 0.76 mm thick fins is 1.27 cm from the cylinder surface. The heat transfer coefficient between cylinder and atmospheric air is 17 W/m² K. Calculate the rate of heat transfer and the temperature at the end of fins if surface temperature of cylinder is 150°C. (13)
- 12. a) i) Air at a pressure of 8 kN/m² and a temperature of 250°C flows over a flat plate 0.3 m wide and 1 m long at a velocity of 8 m/s. If the plate is to be maintained at a temperature of 78°C estimate the rate of heat to be removed continuously from the plate. **(7)**

velocity is 3.5 m/s. Calculate the heat loss from the sphere.

ii) A heated sphere having a diameter of 30 mm is maintained at a temperature of 90°C and is placed in water stream at 20°C. The water flow **(6)**

(OR)

- b) i) Determine the average heat transfer coefficient over the entire length from a vertical plate of height 2 m to the surrounding air, if it is known that the surface temperature of the plate is 105°C. Assume the ambient temperature is 15°C.
 - **(7)**

(6)

- ii) A 10 mm diameter spherical steel ball at 260°C is immersed in air at 90°C. Estimate the rate of convective heat loss.
- 13. a) i) Hot water enters a counter flow heat exchanger at 95°C. This hot water is used to heat a cool stream of water from 8 to 40°C. The flow rate of the cool water is 1.2 kg/s, and that of the hot water is 2.7 kg/s. The overall heattransfer coefficient is 850 W/m²°C. What is the area of the heat exchanger and its effectiveness? **(8)**
 - ii) Name and brief the different types of heat exchangers. **(5)**

(OR)

- b) i) A hot stream is cooled from 120°C to 30°C while the cold stream temperature changes from 20°C to 60°C. Find out the LMTD for both counter current and co-current phenomenon. Justify how counter current is effective than co-current? (5)
 - ii) What is flow boiling and pool boiling? Describe how heat transfer coefficient m in regimes of pool boiling.(8)
- 14. a) Assuming the sun (diameter = 1.4×10^9 m) as a black body having a surface temperature of 5750 K and at a mean distance of 15×10^{10} m from the earth (diameter = 12.8×10^6 m). Estimate the following:
 - i) Total energy emitted by the sun.
 - ii) The emission received per m² just outside the atmosphere of earth.
 - iii) The total energy received by the earth if no radiation is blocked by the atmosphere of the earth. (13)

(OR)

- b) Calculate the net radiant heat exchange per m^2 area for two large parallel plates of temperatures 427° C and 27° C respectively. ϵ (hot plate) = 0.9 and ϵ (cold plate) = 0.6. If a polished aluminium shield is placed between them, find the percentage reduction in the heat transfer if ϵ (shield) = 0.4. (13)
- 15. a) Two large vessels contain uniform mixture of air and sulphur dioxide at 1 atm and 273 k, but at different concentrations. Vessel 1 contains 80% air and 20% SO_2 by volume or mole percentage whereas vessel 2 contains 30% air and 70% SO_2 by mole percentage. The vessels are connected by a 10 cm inner diameter 1.8 m long pipe. Determine the rate of transfer of air between these two vessels by assuming that a steady state transfer takes place. The mass diffusivity of air SO_2 mixture at 1 atm and 273 K is 0.122×10^{-4} m²/s.

(OR)

b) The water in a 5m × 15m outdoor swimming pool is maintained at a temperature of 27°C. The average temperature and relative humidity are 37°C and 40% respectively. Assuming a wind speed of 2m/s in the direction of the long side of the pool, estimate the mass transfer coefficient for the evaporation of water from the pool surface and the rate of evaporation in kg/day.

PART - C

-4-

 $(1\times15=15 \text{ Marks})$

- 16. a) A uniform sheathing of plastic insulation (k = 0.18 W/m°C) is applied to an electric cable of 8 mm diameter. The convective heat transfer coefficient on the surface of bare cable as well as insulated cable was estimated as 12.5 W/(m²°C) and a surface temperature of 45°C was observed when the cable was directly exposed to ambient air 20°C. Determine:
 - i) the thickness of insulation to keep the wire as cool as possible and
 - ii) the surface temperature of insulated cable if the intensity of current flowing through the conductor remains unchanged.

(OR)

b) Air is to be heated by passing it over a bank of 3 m long tubes inside which steam is condensing at 100°C. Air approaches the tube bank in the normal direction at 20°C and 1 atm with a mean velocity of 5.2 m/s. The outer diameter of the tubes is 1.6 cm, and the tubes are arranged staggered with longitudinal and transverse pitches of 4 cm. There are 20 rows in the flow direction with 10 tubes in each row. Determine the rate of heat transfer and the rate of condensation of steam inside the tubes.